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space configurations at hadron colliders. The method relieson a re-organizationof phase space for

the real radiation contributions, defining a one-to-many map such that each point in the real phase

space is associated with a distinct Born topology. As a result virtual and real singularities cancel at

each Born phase space point. The new phase space maps can be used in a traditional approach for

NLO calculations. However, interesting applications arise when one instead integrates out the real

radiation up to a specified scale. This allows one to define NLOweights for individual phase space

points that are present at LO. This method allows for the extension of matrix element methods

to next-to-leading order, even in the presence of jets. We discuss some recent applications of the

matrix element method to Higgs physics at the LHC.
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1. Introduction

In order to search for exotic new physics, or to accurately measure the properties of known
particles, one must extract the maximal amount of physical information from each event. One way
of achieving this goal is to assign each event a weight associated with a chosen theoretical hypoth-
esis. These event by event discriminants can offer improvements over more traditional analyses
that are based on a sequence of kinematic cuts. The Matrix Element Method (MEM) [1, 2, 3, 4, 5]
represents a class of kinematic discriminants in which a fixed order matrix element is used to as-
sign the theoretical weight. This is motivated by the fact that, by its very nature, the matrix element
contains the most theoretical information available. Historically, a drawback of the MEM was its
restriction to leading order matrix elements. Extensions beyond LO are necessary in order to ensure
the theoretical rigor of the method, but require careful consideration of the real and virtual phase
spaces and their associated singularities.

The aim of this work is to provide a mechanism of combining real and virtual phase spaces
such that event-by-event weights can be defined at NLO. The resulting algorithms can then be used
to construct a MEM accurate to NLO. We will define a method thatprovides unique NLO weights
for individual Born phase space points. Section 2 describeshow the weights are constructed,
beginning from a LO topology. We present some simple validations of the method in section 3, and
discuss the application to the MEM in section 4. Finally in section 5 we present our conclusions.

2. Event-by-event weighting at NLO

2.1 Electroweak final states

We begin by presenting the simplest case in which the LO eventcontains no colored final state
particles. These electroweak final states were studied in detail in the context in ref. [6], which
presented a new implementation of the MEM at NLO using event-by-event NLO reweighting. In
order to produce well-defined and unique weights the MEM requires integration over the initial
state longitudinal degrees of freedom. This integration isa feature of the MEM method and not a
core requirement of the event-by-event reweighting. Therefore in the following section we simplify
the discussion by focussing solely on the reweighting of LO phase space points to NLO. The aim
of this section is to define an event-by-eventK-factor such that the NLO calculation is rendered in
the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB). (2.1)

HereP(ΦB) represents a weight defined at a given order for an input Born phase space point,ΦB.
The Born phase space point is defined as follows,ΦB = (x1,x2,{Qn}), where{Qn} is a set of four
momenta which represent then final state electroweak particles. The two initial partons are defined
in the lab frame and are fully specified by the fractions of thebeam momentum,x1 andx2. Given
this phase space point it is trivial to define a weight using the LO matrix element.

PLO(ΦB) =
f (x1) f (x2)

2x1x2s
|M (0)(ΦB)|

2 (2.2)
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Upon integration over the full Born phase space one reproduces the LO cross section, i.e.

σLO =
∫

dx1 dx2

n

∏
i=1

d4pi δ (+)(p2
i −m2

i ) δ (4)(∑
i

pi − p1− p2) PLO(ΦB) (2.3)

We now wish to define the NLO corrections to this fully exclusive phase space pointΦB. This is
trivial to evaluate for the virtual corrections, since theyshare the same phase space

P̃V (ΦB) =
f (x1) f (x2)

2x1x2s

(

|M (0)(ΦB)|
2+2Re

{

M
(0)

M
(1)†

(ΦB)

})

(2.4)

In this equation we introduced the notatioñPV , where the tilde signifies a weight that is divergent.
Weights without a tilde have been rendered finite, using a prescription that we will describe shortly.

Having defined our weights for the virtual corrections our remaining task is to evaluate the real
corrections which occupy the larger phase spaceΦR.

Our aim is to define a map between the real and Born phase spacessuch that the two cal-
culations can be combined together in a meaningful way. We thus choose to define the real phase
space as a map from the Born kinematics using the following definition ΦR(ΦB)= (xa,xb,{Qn}, pr)

whereQn corresponds to the electroweak particles associated with the original Born point. In this
formalism it is clear that all final state (electroweak) Lorentz invariant quantities are preserved be-
tween the Born and the real phase space points. It is also clear that it is impossible to maintainQn

and momentum conservation whilst maintaining collisions along thez axis. Our setup requires the
former, so it is necessary to move the initial state away fromthez-axis. For this reason, it is clear
that quantities that are not Lorentz invariant take different values in the two phase spaces. The lab
frame is restored by boosting the new phase space point back to a frame in which the beams are
longitudinal, and it is in this frame in which the parton fractions are defined and PDFs are eval-
uated. Fully inclusive NLO cross sections are obtained by integrating the emissions over the full
phase space. Exclusive NLO cross sections are defined by integrating up to apT scale in which the
parton would be observed as a (lab frame) jet.

In this formalism it is natural to use a forward branching phase space generator [7] in which a
Born phase space point undergoes a branching in the initial state to produce the real radiation. The
corresponding element of phase space is,

d ΦIS
FBPS=

1
(2π)3

Q2

sab
d tard trbd φ (2.5)

wherea andb represent the new initial state momenta, andpr is the branched momenta. Using this
phase space we can define the following real weight

P̃R(ΦB) =
∫

d ΦIS
FBPS(ΦB)Jx

f (xa) f (xb)

2xaxbs
|M(0)

R (ΦR(ΦB))|
2 (2.6)

whereJx represents the Jacobian from changing the initial state variables(x1,x2) to (xa,xb). In our
setup, where we integrate overx1 this factor is given byJx = 1/(x1s). Note that, at this stage, our
weight is still divergent.
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2.1.1 Regulating the cross section

SinceP̃R andP̃V are separately divergent they need to be regulated in order to define our
physical, dynamicalK factors. In order to do this, our regulating procedure for the real radiation
must only involve the phase space point at which the virtual contribution is evaluated. This rules
out the possibility of using the Catani-Seymour dipole procedure [8], in which singularities are
cancelled by mapping an individual real phase space point tomany Born configurations. However
a simple alternative is to use phase space slicing [9, 10]. This method introduces a small parameter
smin and one integrates the full real matrix element under the condition that allsi j lie above this
threshold. Below this threshold one integrates simplified functions which reproduce the soft and
collinear singularities of the full matrix element. This procedure is accurate toO(smin), so is a
good approximation for sufficiently smallsmin. The simplified matrix elements are simple enough
to integrate analytically, producing counter terms which cancel the remaining poles in the virtual
amplitude. this regulating prescription we can define the weight as follows,

PNLO =
f (x1) f (x2)

2x1x2s

(

(1+Rv(smin))|M
(0)(ΦB)|

2+2Re

{

M
(0)

M
(1)†

(ΦB)

})

+
∫

smin

d ΦIS
FBPS(ΦB)Jx

f (xa) f (xb)

2xaxbs
|M(0)

R (ΦR(ΦB))|
2+O(smin) (2.7)

In this equationRv corresponds to the integrated real phase space and, since real radiation is subject
to the cutoff parameter, it depends onsmin.

2.2 Final states with jets

We now wish to extend the results of the previous section to include Born final states which
contain jets. We define a jet using the following kinematic variables,

Ji = (pT,i,ηi,φi,mi) (2.8)

where pT , η , φ and m j represent, respectively, the transverse momentum, pseudo-rapidity, az-
imuthal angle and mass of the jet. At Born level a jet has a massequal to its parent parton,
which in here we take to be zero. We can now define a Born phase space point as follows,
ΦB = (x1,x2,{Qi},{J j}) where then-particle final state is determined byi electroweak particles
({Qi}) and j jets ({J j}). In order to assign a fixed order weight to this phase space point we
must define the function which maps the four vectors ofm partons ton jets. This jet-function
C({pm},{Jn}) is crucial in order to define exclusive weights for events containing jets. At LO the
jet-function is particularly simple since each parton can be assigned to an individual jet

CLO
1|m({pm}|{Jm}) =

m

∏
i=1

δ (pT,i − pJ
T,i)δ (φi −φ J

i )δ (ηi −ηJ
i ) (2.9)

We note that the product of jet functions are themselves jet functions,

CLO({p1 . . . pi}|{J1 . . .Ji})C
LO({pi+1 . . . pm}|{Ji+1 . . .Jm}) =CLO({pm}|{Jm}) (2.10)

Using our jet function we can define our LO weight in the presence of jets

PLO(ΦB) =
f (x1) f (x2)

2x1x2s
|M (0)(ΦB)|

2CLO({pm}|{Jm}). (2.11)
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As was the case in the previous section it is trivial to include the virtual corrections at this phase
space point, since they share both the phase space and jet-functions. We will also proceed to
regulate our virtual amplitudes using the integrated approximate matrix element from the slicing
setup. Our virtual weight is thus defined as

PV =
f (x1) f (x2)

2x1x2s

(

(1+Rv(smin))|M
(0)(ΦB)|

2+2Re

{

M
(0)

M
(1)†

(ΦB)

})

CLO({pm}|{Jm})

(2.12)

The jet-function for the real radiation maps anm+ 1 parton level event tom jets, in one of two
ways. Firstly the jets could be identified with individual partons, in the same manner as at LO.
Secondly, a new topology for the real phase space occurs whentwo partons are clustered together
to form a jet. The real jet-function is thus defined as follows,

C({p1 . . . pm+1}|{J1 . . .Jm}) =
m+1

∑
i=1

CLO({p1 . . . pi−1}|{J1 . . .Ji−1})CLO({pi+1 . . . pm+1}|{Ji+1 . . .Jm+1})

+
m

∑
i=1

m+1

∑
j=i+1

(

m+1

∏
α=1,α 6=i, j

δ (pT,α − pJ
T,α)δ (φα −φ J

α)δ (ηα −ηJ
α)

)

×δ (pT,i+ j − pJ
T,i)δ (φi+ j −φ J

i )δ (ηi+ j −ηJ
i )

=
m+1

∑
i=1

CIS(i)+
m

∑
i=1

m+1

∑
j=i+1

CFS(i, j) (2.13)

The first term in the above equation, in which individual partons are identified as final state jets,
is clearly very similar to the situation described in the previous section. We define this region as
CIS(i), where thei denotes the parton which is not associated with a jet. It is most natural in this
region to use the initial state forward brancher, with the branched parton being identified as particle
i. The second summation, overCFS(i, j) is a new feature at NLO, and represents configurations in
which two partonspi andp j cluster to form the jetJα . The clustering of the two partons results in
the jet acquiring a non-zero mass. Since our jet definition freezespT , η andφ it is clear that the
NLO jet is related to the LO jet by a longitudinal rescaling.

Using this setup it is straightforward to construct a final state forward branching phase space
generator. This phase space generator branches a Born jet toproduce two massless partons. Pro-
vided they pass the clustering algorithm, they automatically cluster to reproduce the kinematic
properties of the Born jet, whilst having a non-zero mass. Specifically the phase space factorizes
as follows,

dΦR(xa,xb,{Qn},{pm+1})→ ∑
i j,α

dΦB(x1,x2,{Qn},{Jm−1})d ΦFS
FBPS(pi, p j,Jα) (2.14)

The momentapi andp j are generated according to the final state forward branchingmeasure,

d ΦFS
FBPS(pi, p j,Jα) =

mT mL

JL · p jL
d p(4)i δ (+)(pi)

2 (2.15)

Given the vectorpi, p j is constrained such thatpi + p j has the same values ofpT , η andφ as the
Born jetJα . In order to ensure momentum conservation the beam undergoes a longitudinal Lorentz
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Figure 1: The dependence of the dynamicalK factor onsmin, for pp → e+e− (left) and pp → e+e−+jet
(right). In each calculation theK factor is calculated for a single phase space point.

transformation. The quantitiesmT andmL are the transverse and longitudinal mass ofpi + p j. If
partonsi and j are not selected to cluster under the jet algorithm then the event is rejected.

We can combine the results of this section to define a NLO weight for an exclusive final state
including jets,

PNLO =
f (x1) f (x2)

2x1x2s

(

(1+Rv(smin))|M
(0)(ΦB)|

2+2Re

{

M
(0)

M
(1)†

(ΦB)

})

+
n jets+1

∑
i=1

∫

smin

d ΦIS
FBPS(ΦB)Jx

f (xa) f (xb)

2xaxbs
|M(0)

R (ΦR(ΦB))|
2CIS(i)

+
n jets

∑
i=1

n jets+1

∑
j=i+1

∫

smin

d ΦFS
FBPS(ΦB)Jx

f (xa) f (xb)

2xaxbs
|M(0)

R (ΦR(ΦB))|
2CFS(i, j)+O(smin) (2.16)

A dynamicalK-factor is then given by the ratioPNLO/PLO, which is defined point-by-point in
the Born phase space.

3. Validation

We validate our method by investigating the dependence of the NLO cross section on the reg-
ulating parametersmin, at a fixed Born phase space point. We consider both the simplest case of an
electroweak final state,pp → e+e−, as well as the extension to include a jet,pp → e+e−+jet. Our
results, for sample phase space points, are shown in Fig. 1. The cancellation of logarithms between
the virtual and real contributions is apparent in both cases, resulting in a dynamicalK factor that
shows no significant dependence onsmin. We have also checked that, if the full differential infor-
mation regardingPNLO is maintained, we reproduce the results of a traditional NLOcalculation
when integrating over the entire Born phase space.

4. The Matrix Element Method at NLO

An obvious application of the method described above is the extension of the MEM to NLO
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accuracy. In this section we provide a brief introduction tothis application. The MEM proceeds by
associating an input event with a weight arising from the matrix element. For simplicity, consider
the production of aZ boson in a hadronic collision. Since such events in data, or those obtained
from Monte Carlo event simulations, typically possess significant hadronic recoil, one must map
this onto a LO partonic configuration in which transverse momentum is balanced. An appropriate
map is obtained by boosting the event such that the transverse momentum of the LO final state
balances. Since there are multiple longitudinally-connected Lorentz transformations that result
in the same transverse final state, this boost is not unique. One must therefore integrate over all
longitudinally equivalent, boosts. This is accomplished by integrating over the parton fractionsxi,
under the constraint that the invariant mass of the final state is preserved. The MEM weight is then
defined by,

PMEM(φ̃B) =
1
σ

∫

dx1dφB P(φB)W (φB, φ̃B) (4.1)

In the above equation the input event (φ̃B) is related to a parton level event(φB) by the transfer
functionsW . The Lorentz transformation is then applied to the parton level eventφB, and the
longitudinal integration occurs for each generated phase space point. The detailed discussion of
the transfer functions,W is beyond the scope of this work. Here we merely note that theyare
rather simple for well-identified final state leptons, and much more complicated for final state jets.
Using the results of the section 2 it is fairly straightforward to extend the MEM to NLO, by simply
using the appropriately-definedP andσ . It is also possible for the transfer functionsW to change
when moving from LO to NLO. Such modifications can be estimated in data by comparing the use
of parton showers that include both LO and NLO effects to fit the transfer functions. Ideally the
latter option would be used for a consistent picture at NLO. Using these weights one can construct
event-by-event kinematic discriminants to search for events corresponding to particular choices of
the matrix element, for instance corresponding to signal and background processes.

In ref. [11] the MEM@LO and MEM@NLO were used to study the decay of a Higgs boson
into the Zγ final state. This rare decay of the Higgs boson is incredibly difficult to search for
experimentally due to the combination of low rate and kinematic similarities between the signal and
backgrounds. This search is a therefore a prime candidate tobenefit from the additional power of
MEM discriminants. Indeed, imposing a simple MEM cut improves a traditionalmℓℓγ fit by around
a factor of two. The MEM@NLO was found to perform around 16% better than the equivalent
MEM@LO algorithm. Since this channel will require thousands of inverse femtobarns of data,
such an improvement represents a significant benefit to the analysis. More recently the MEM has
been used at LO to investigate the potential of finding off-shell Higgs events as a means to constrain
the Higgs width at the LHC [12]. In this case the use of a MEM discriminant could improve limits
obtained using a simple cut-and-count approach by a factor of 1.5 or more. Given the importance
of the Higgs width, and the inherent difficulty in measuring this in a hadronic environment, this
again demonstrates the power of the MEM.

5. Conclusions

We have presented a method which reweights Born phase space points to next-to-leading or-
der. The method relies on the generation of real phase configurations that are obtained by simple
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maps from an underlying Born topology. Each initial or final state parton branches, and the full
real radiation phase space is recovered by the integration over all branchings. If this branching is
inclusive then one naturally recovers the inclusive cross section. Alternatively, if the emission is
curtailed at some scale, one reproduces the exclusive NLO cross section. Using our setup one can
reproduce traditional NLO cross sections and distributions, by keeping all of the kinematic infor-
mation regarding the branched final state. On the other hand,if one integrates out the branching,
one can effectively define a dynamicalK factor for each event in the Born phase space. Since this
integration requires mapping real emissions back to a LO topology, it is most natural to impose a
scale at which the emission becomes too hard and is associated with an observed jet. By integrat-
ing out the emissions one obtains a procedure for weighting individual Born events in a way that
accounts for corrections from higher orders in perturbation theory.
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